Brazing Process & Types of Brazing Rods

Brazing Rods Archives - Welding Alloys Manufacturers In India

Brazing Process & Types of Brazing Rods

Table of Contents

  • Principle of Brazing Process
  • Brazing
  • Four Requirements of Non-fusion welding
  • Important Properties in Brazing Rods
  • Key steps to successful Brazing Application
  • Advantages of Non-fusion – Brazing Process
  • Disadvantages of Non-fusion – Brazing Process\
  • Types of Brazing Rods

 

Brazing is based on the principle of solid phase welding process. Let us understand the process in further detail.

Principle of Brazing Process:

  • Solid phase welding is carried out
    • Below the melting point of base metal
    • Without using any filler additions
    • Often with the use of pressure
    • Union is often formed by plastic flow

Welding comes under Fusion process, whereas Brazing comes under Solid phase welding process.

Brazing:

In Brazing process, the joining happens with diffusion welding methodology, The joining takes place by atomic diffusion of the two surfaces in contact. Surfaces are usually heated to high temperatures but kept below the melting point of the base metal & pressure may be employed to ensure joining.

  • Brazing: This is a process that happens between 450 degrees and 750 degrees temperature. In this process, alloys with silver or copper base are used for Brazing.

Four Requirements of Non-fusion welding:

1. Clean Surface: In a non-fusion process, the metals bond with each other through adhesion, which occurs because of the molecular attraction between the bodies in contact.

    • Molecular bonding requires a clean surface.

2. Filler Rods: Filler rods are available for many non-fusion processes.

    • Brazing: Brazing rods are available as bare rods or flux coated rods.
    • Soldering: Solder can be solid or flux core/paste which can be tin, silver or zinc alloy.

3. Flux: Flux must be used with all non-fusion welding processes.
The purpose of flux is to:

    1. Chemically clean the metal
    2. Shield the process oxidation and atmospheric contamination
    3. Filler rods are available for many non-fusion processes.
    4. Brazing: Brazing rod is available as bare rods or flux coated.

4. Heat Source: The temperature of the base metal needs to be raised sufficiently above the melting point of the filler rod. Several heat sources can be used, as detailed below:

    • Oxyacetylene
    • Air acetylene
    • Air propane (LPG)
    • Oxy-propane
    • Electric soldering iron
    • Electric soldering gun

Important Properties in Brazing Rods:

  • Capillary Action: The capillary effect is a function or the ability of the liquid molten brazing material to wet a particular base material. Capillary action takes place when the metal surfaces, clean surfaces and flux are in close proximity to each other.

Key steps to successful Brazing Application:

  • Tinning: In the brazing process, before assembling the joint/seam, there is a step that requires both the surfaces to be coated with a thin layer of filler using the brazing rod. Popularly known as tinning, this step is followed by brazing to assemble sheet metal joints/seams.
  • Controlling Heat: Metals are excellent conductors of heat
    • When heat gets applied to a joint, it will move away to heat up the surrounding metal.
    • The greater the mass of metal that must be heated–the greater the heat requirement.

By applying excessive heat, we can make the flux burn. It could contaminate the joint requiring us to clean the joint again before brazing. There is a need for better manipulation of the heat source, if we are to heat both pieces evenly.

Advantages of Non-fusion – Brazing Process:

  • Lower temperature process
  • Easy assembly of parts
  • Weld dissimilar metals
  • Allow disassembly/realignment
  • Join metals of different thicknesses
  • Join diverse types of metal

Disadvantages of Non-fusion – Brazing Process:

  • Results in lower tensile strength
  • Not an efficient method for thick metal
  • Not an efficient method for large parts.

Types of Brazing Rods:

Brazing Rods are available in both ferrous and non-ferrous process for joining/welding different base materials.

  1. Aluminium
  2. Copper & its alloys
  3. Silver Brazing Alloys
  4. Steel

Hence is widely used in industries for joining various components. ADFL serves the industry by manufacturing and supplying the entire range of Brazing products, suitable for use in all three processes.

Flux Coated Brazing Alloys And Their Requirements

Table of Contents

  • Non-fusion Welding – Advantages & Disadvantages
  • Four Requirements of Brazing Process
    • Clean Metal
    • Filler Rod
    • Heat Source
    • Flux
  • Advantages of Flux-coated Brazing Rods
  • Importance of controlling heat brazing & Key benefits with Flux-coated Brazing rods
  • Brazing Process
  • Flux coated brazing rods & their uses

Flux Coated Brazing Alloys And Their Requirements

Brazing  is a part of non-fusion welding process where only the filler rod is melted. Brazing Rods are available as bare rods as well as flux coated brazing rods. Flux Coated Brazing Rods can be used for brazing & braze welding application. 

Non-fusion Welding – Advantages & Disadvantages

  • Advantages
    • Lower temperature
    • Easy assembly
    • Weld dissimilar metals
    • Allows disassembly/realignment
    • Join metals of different thicknesses
    • Joint different types of metal
  • Disadvantages
    • Lower tensile strength
    • Not efficient method for thick metal 
    • Not efficient method for large parts 

Four Requirements of Brazing Process

  • Clean metal
  • Appropriate filler rod
  • Correct flux or Flux coated Brazing Rods
  • Heat

Clean Metal:

  • The brazing process bonds metal through a property called adhesion.- Where adhesion can be defined as the molecular attraction which is exerted between bodies when they come into contact.
  • Such bonding between molecules requires the surfaces to be clean, not polished.

Filler Rod 

  • Brazing: 
    1. Brazing rods are available as bare rods or flux-coated brazing rods

Heat Source:

  • The heat must be sufficient (in BTUs) to raise the base metal temperature above the melting point of the filler rod to solder or braze the joint.
  • Several heat sources can be used.
    1. Oxy acetylene
    2. Air acetylene
    3. Air propane (LPG)
    4. Oxy propane
    5. Electric soldering iron
    6. Electric soldering gun

Flux:

  • Flux must be used with brazing processes.
  • Three purposes of flux.
    1. Chemically clean the metal
    2. Shield weld from oxidation and atmospheric contamination
    3. Promote wetting
  • Choice of flux depends on both the metal and the filler material.
  • Flux comes in three forms.
    1. Paste
    2. Powder
    3. Liquid

Advantages of Flux-coated Brazing Rods.

  • No external flux required 
  • Addition of alloying elements 
  • Better Bonding with uniform Flux 
  • Better Properties as bonding achieved 
  • Simpler process for welder 

Importance of controlling heat brazing & Key benefits with Flux-coated Brazing rods 

  • Metals are excellent conductors of heat
    1. Heat applied to a joint is conducted away from the joint.
    2. The heat required by the process depends on the amount of metal that needs to be heated.
  • Excessive heat causes the flux coating to burn
    1. It can contaminate the joint.
    2. Joint may need to be cleaned again
  • When we use flux-coated brazing rods, we can manage the application of heat to make it even ensuring controlled wetting and high-quality brazing properties. 

Brazing Process:

The brazing process uses a metal alloy that melts above 450oC, but less than the melting point of the base metal. The brazing process is aided by capillary action through which the filler metal gets drawn into the joint or stays in the joint. The capillary effect determines the ability of a liquid to wet a given material. This process is made possible by a very small gap between metal surfaces, clean surfaces, and flux.

Flux coated brazing rods & their uses.

Flux coated brazing rods are used for their capillary action and their ability to offer a higher build-up. Flux-coated silver brazing rods are used in close fit joints with capillary action.

Also, Cu based bronze and brass alloys are used to join thicker sections without capillary action. Flux coated brazing rods with tungsten carbides are used for hardfacing applications in industries. This process is called braze welding; In this process, the Brazing happens above 750⁰C but below the melting temperature of the base metal.

Unique advantages of flux coated brazing rods is that they can be used equally well in applications requiring capillary action and in applications that need higher build up or hardfacing through braze welding.

 

ADFL is first among the few companies in India that manufacture Flux Coated Brazing Alloys. This product range of Ador Fontech underlies our concept of Life Enhancement of Industrial components to the complete satisfaction of customers.

Reclaim. Do not Replace.

Flux Coated Brazing Alloys And Their Requirements